全球即时:【模型部署 01】C++实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

博客园 2023-05-27 00:33:56

深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。

以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:


【资料图】

结论:GPU加速首选TensorRT;CPU加速首选OpenVINO;如果需要兼具CPU和GPU推理功能,可以选择ONNXRuntime。

下一篇内容:【模型部署 02】Python实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署

1. 环境配置1.1 OpenCV DNN

【模型部署】OpenCV4.6.0+CUDA11.1+VS2019环境配置

1.2 ONNXRuntime

【模型部署】在C++和Python中配置ONNXRuntime环境

1.3 TensorRT

【模型部署】在C++和Python中搭建TensorRT环境

1.4 OpenVINO2022

【模型部署】在C++和Python中配置OpenVINO2022环境

2. PyTorch模型文件(pt/pth/pkl)转ONNX2.1 pt/pth/pkl互转

PyTorch中支持导出三种后缀格式的模型文件:pt、pth和pkl,这三种格式在存储方式上并无区别,只是后缀不同。三种格式之间的转换比较简单,只需要创建模型并加载模型参数,然后再保存为其他格式即可。

以pth转pt为例:

import torchimport torchvision# 构建模型model = torchvision.models.googlenet(num_classes=2, init_weights=True)# 加载模型参数,pt/pth/pkl三种格式均可model.load_state_dict(torch.load("googlenet_catdog.pth"))model.eval()# 重新保存为所需要转换的格式torch.save(model.state_dict(), "googlenet_catdog.pt")
2.2 pt/pth/pkl转ONNX

PyTorch中提供了现成的函数torch.onnx.export(),可将模型文件转换成onnx格式。该函数原型如下:

export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL,           input_names=None, output_names=None, operator_export_type=None,           opset_version=None, do_constant_folding=True, dynamic_axes=None,           keep_initializers_as_inputs=None, custom_opsets=None,           export_modules_as_functions=False)

主要参数含义:

model(torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction):需要转换的模型。args(tuple or torch.Tensor):args可以被设置为三种形式:一个tuple,这个tuple应该与模型的输入相对应,任何非Tensor的输入都会被硬编码入onnx模型,所有Tensor类型的参数会被当做onnx模型的输入。
args = (x, y, z)
一个Tensor,一般这种情况下模型只有一个输入。
args = torch.Tensor([1, 2, 3])
一个带有字典的tuple,这种情况下,所有字典之前的参数会被当做“非关键字”参数传入网络,字典中的键值对会被当做关键字参数传入网络。如果网络中的关键字参数未出现在此字典中,将会使用默认值,如果没有设定默认值,则会被指定为None。
args = (x,        {"y": input_y,         "z": input_z})

NOTE:一个特殊情况,当网络本身最后一个参数为字典时,直接在tuple最后写一个字典则会被误认为关键字传参。所以,可以通过在tuple最后添加一个空字典来解决。

# 错误写法:torch.onnx.export(    model,    (x,     # WRONG: will be interpreted as named arguments     {y: z}),    "test.onnx.pb") # 纠正torch.onnx.export(    model,    (x,     {y: z},     {}),    "test.onnx.pb")
f:一个文件类对象或一个路径字符串,二进制的protocol buffer将被写入此文件,即onnx文件。export_params(bool,default False):如果为True则导出模型的参数。如果想导出一个未训练的模型,则设为False。verbose(bool,default False):如果为True,则打印一些转换日志,并且onnx模型中会包含doc_string信息。training(enum,default TrainingMode.EVAL):枚举类型包括:TrainingMode.EVAL - 以推理模式导出模型。TrainingMode.PRESERVE - 如果model.training为False,则以推理模式导出;否则以训练模式导出。TrainingMode.TRAINING - 以训练模式导出,此模式将禁止一些影响训练的优化操作。input_names(list of str,default empty list):按顺序分配给onnx图的输入节点的名称列表。output_names(list of str,default empty list):按顺序分配给onnx图的输出节点的名称列表。operator_export_type(enum,default None):默认为OperatorExportTypes.ONNX, 如果Pytorch built with DPYTORCH_ONNX_CAFFE2_BUNDLE,则默认为OperatorExportTypes.ONNX_ATEN_FALLBACK。枚举类型包括:OperatorExportTypes.ONNX - 将所有操作导出为ONNX操作。OperatorExportTypes.ONNX_FALLTHROUGH - 试图将所有操作导出为ONNX操作,但碰到无法转换的操作(如onnx未实现的操作),则将操作导出为“自定义操作”,为了使导出的模型可用,运行时必须支持这些自定义操作。支持自定义操作方法见链接。OperatorExportTypes.ONNX_ATEN - 所有ATen操作导出为ATen操作,ATen是Pytorch的内建tensor库,所以这将使得模型直接使用Pytorch实现。(此方法转换的模型只能被Caffe2直接使用)OperatorExportTypes.ONNX_ATEN_FALLBACK - 试图将所有的ATen操作也转换为ONNX操作,如果无法转换则转换为ATen操作(此方法转换的模型只能被Caffe2直接使用)。例如:
# 转换前:graph(%0 : Float):  %3 : int = prim::Constant[value=0]()  # conversion unsupported  %4 : Float = aten::triu(%0, %3)  # conversion supported  %5 : Float = aten::mul(%4, %0)  return (%5)# 转换后:graph(%0 : Float):  %1 : Long() = onnx::Constant[value={0}]()  # not converted  %2 : Float = aten::ATen[operator="triu"](%0, %1)  # converted  %3 : Float = onnx::Mul(%2, %0)  return (%3)
opset_version(int,default 9):取值必须等于_onnx_main_opset或在_onnx_stable_opsets之内。具体可在torch/onnx/symbolic_helper.py中找到。例如:
_default_onnx_opset_version = 9_onnx_main_opset = 13_onnx_stable_opsets = [7, 8, 9, 10, 11, 12]_export_onnx_opset_version = _default_onnx_opset_version
do_constant_folding(bool,default False):是否使用“常量折叠”优化。常量折叠将使用一些算好的常量来优化一些输入全为常量的节点。example_outputs(T or a tuple of T, where T is Tensor or convertible to Tensor, default None):当需输入模型为ScriptModule 或 ScriptFunction时必须提供。此参数用于确定输出的类型和形状,而不跟踪(tracing)模型的执行。dynamic_axes(dict> or dict, default empty dict):通过以下规则设置动态的维度:KEY(str) - 必须是input_names或output_names指定的名称,用来指定哪个变量需要使用到动态尺寸。VALUE(dict or list) - 如果是一个dict,dict中的key是变量的某个维度,dict中的value是我们给这个维度取的名称。如果是一个list,则list中的元素都表示此变量的某个维度。

代码实现:

import torchimport torchvisionweight_file = "googlenet_catdog.pt"onnx_file = "googlenet_catdog.onnx"model = torchvision.models.googlenet(num_classes=2, init_weights=True)model.load_state_dict(torch.load(weight_file, map_location=torch.device("cpu")))model.eval()# 单输入单输出,固定batchinput = torch.randn(1, 3, 224, 224)input_names = ["input"]output_names = ["output"]torch.onnx.export(model=model,                  args=input,                  f=onnx_file,                  input_names=input_names,                  output_names=output_names,                  opset_version=11,                  verbose=True)

通过netron.app可视化onnx的输入输出: 

如果需要多张图片同时进行推理,可以通过设置export的dynamic_axes参数,将模型输入输出的指定维度设置为变量。

import torchimport torchvisionweight_file = "googlenet_catdog.pt"onne_file = "googlenet_catdog.onnx"model = torchvision.models.googlenet(num_classes=2, init_weights=True)model.load_state_dict(torch.load(weight_file, map_location=torch.device("cpu")))model.eval()# 单输入单输出,动态batchinput = torch.randn(1, 3, 224, 224)input_names = ["input"]output_names = ["output"]torch.onnx.export(model=model,                  args=input,                  f=onnx_file,                  input_names=input_names,                  output_names=output_names,                  opset_version=11,                  verbose=True,                  dynamic_axes={"input": {0: "batch"}, "output": {0: "batch"}})

动态batch的onnx文件输入输出在netron.app可视化如下,其中batch维度是变量的形式,可以根据自己需要设置为大于0的任意整数。

如果模型有多个输入和输出,按照以下形式导出:

# 模型有两个输入和两个输出,动态batchinput1 = torch.randn(1, 3, 256, 192).to(opt.device)input2 = torch.randn(1, 3, 256, 192).to(opt.device)input_names = ["input1", "input2"]output_names = ["output1", "output2"]torch.onnx.export(model=model,                  args=(input1, input2),                  f=opt.onnx_path,                  input_names=input_names,                  output_names=output_names,                  opset_version=16,                  verbose=True,                  dynamic_axes={"input1": {0: "batch"},                                "input2": {0: "batch"},                                "output1": {0: "batch"},                                "output2": {0: "batch"}})
3. OpenCV DNN部署GoogLeNet3.1 推理过程及代码实现

整个推理过程可分为前处理、推理、后处理三部分。具体细节请阅读代码,包括单图推理、动态batch推理的实现。

#include #include #include #include using namespace std;using namespace cv;using namespace cv::dnn;std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx";std::string imagePath = "E:/inference-master/images/catdog";std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";// 标签名称列表(类名)cv::dnn::Net net;std::vector classNameList;// 标签名,可以从文件读取int batchSize = 32;int softmax(const cv::Mat& src, cv::Mat& dst){float max = 0.0;float sum = 0.0;max = *max_element(src.begin(), src.end());cv::exp((src - max), dst);sum = cv::sum(dst)[0];dst /= sum;return 0;}// GoogLeNet模型初始化void ModelInit(string onnxPath){net = cv::dnn::readNetFromONNX(onnxPath);// net = cv::dnn::readNetFromCaffe("E:/inference-master/2/deploy.prototxt", "E:/inference-master/2/default.caffemodel");// 设置计算后台和计算设备// CPU(默认)// net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);// net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);// CUDAnet.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);// 读取标签名称ifstream fin(classNamesPath.c_str());string strLine;classNameList.clear();while (getline(fin, strLine))classNameList.push_back(strLine);fin.close();}// 单图推理bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence){auto start = chrono::high_resolution_clock::now();cv::Mat image = srcImage.clone();// 预处理(尺寸变换、通道变换、归一化)cv::cvtColor(image, image, cv::COLOR_BGR2RGB);cv::resize(image, image, cv::Size(224, 224));image.convertTo(image, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);cv::subtract(image, mean, image);cv::divide(image, std, image);// blobFromImage操作顺序:swapRB交换通道 -> scalefactor比例缩放 -> mean求减 -> size进行resize;// mean操作时,ddepth不能选取CV_8U;// crop=True时,先等比缩放,直到宽高之一率先达到对应的size尺寸,另一个大于或等于对应的size尺寸,然后从中心裁剪;// 返回4-D Mat维度顺序:NCHW// cv::Mat blob = cv::dnn::blobFromImage(image, 1., cv::Size(224, 224), cv::Scalar(0, 0, 0), false, false);cv::Mat blob = cv::dnn::blobFromImage(image);// 设置输入net.setInput(blob);auto end1 = std::chrono::high_resolution_clock::now();auto ms1 = std::chrono::duration_cast(end1 - start);std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;// 前向推理cv::Mat preds = net.forward();auto end2 = std::chrono::high_resolution_clock::now();auto ms2 = std::chrono::duration_cast(end2 - end1);std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;// 结果归一化(每个batch分别求softmax)softmax(preds, preds);Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;className = classNameList[labelIndex];confidence = probability;// std::cout << "class:" << className << endl << "confidence:" << confidence << endl;auto end3 = std::chrono::high_resolution_clock::now();auto ms3 = std::chrono::duration_cast(end3 - end2);std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;auto ms = chrono::duration_cast(end3 - start);std::cout << "opencv_dnn 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;}// 多图并行推理(动态batch)bool ModelInference_Batch(std::vector srcImages, std::vector& classNames, std::vector& confidences){auto start = chrono::high_resolution_clock::now();// 预处理(尺寸变换、通道变换、归一化)std::vector images;for (size_t i = 0; i < srcImages.size(); i++){cv::Mat image = srcImages[i].clone();cv::cvtColor(image, image, cv::COLOR_BGR2RGB);cv::resize(image, image, cv::Size(224, 224));image.convertTo(image, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);cv::subtract(image, mean, image);cv::divide(image, std, image);images.push_back(image);}cv::Mat blob = cv::dnn::blobFromImages(images);auto end1 = std::chrono::high_resolution_clock::now();auto ms1 = std::chrono::duration_cast(end1 - start);std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;// 设置输入net.setInput(blob);// 前向推理cv::Matpreds =  net.forward();auto end2 = std::chrono::high_resolution_clock::now();auto ms2 = std::chrono::duration_cast(end2 - end1) / 100.0;std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;int rows = preds.size[0];// batchint cols = preds.size[1];// 类别数(每一个类别的得分)for (int row = 0; row < rows; row++){cv::Mat scores(1, cols, CV_32FC1, preds.ptr(row));softmax(scores, scores);// 结果归一化Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;classNames.push_back(classNameList[labelIndex]);confidences.push_back(probability);}auto end3 = std::chrono::high_resolution_clock::now();auto ms3 = std::chrono::duration_cast(end3 - end2);std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;auto ms = chrono::duration_cast(end3 - start);std::cout << "opencv_dnn batch" << rows << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;}int main(int argc, char** argv){// 模型初始化ModelInit(onnxPath);// 读取图像vector filenames;glob(imagePath, filenames);// 单图推理测试for (int n = 0; n < filenames.size(); n++){// 重复100次,计算平均时间auto start = chrono::high_resolution_clock::now();cv::Mat src = imread(filenames[n]);std::string classname;float confidence;for (int i = 0; i < 101; i++) {if (i==1)start = chrono::high_resolution_clock::now();ModelInference(src, classname, confidence);}auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100;std::cout << "opencv_dnn 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}// 批量(动态batch)推理测试std::vector srcImages;for (int n = 0; n < filenames.size(); n++){cv::Mat image = imread(filenames[n]);srcImages.push_back(image);if ((n + 1) % batchSize == 0 || n == filenames.size() - 1){// 重复100次,计算平均时间auto start = chrono::high_resolution_clock::now();for (int i = 0; i < 101; i++) {if (i == 1)start = chrono::high_resolution_clock::now();std::vector classNames;std::vector confidences;ModelInference_Batch(srcImages, classNames, confidences);}srcImages.clear();auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100;std::cout << "opencv_dnn batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}}return 0;}
3.2 选择CPU/GPU

OpenCV DNN切换CPU和GPU推理,只需要通过下边两行代码设置计算后台和计算设备。

CPU推理

net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);

GPU推理

net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); 

以下两点需要注意:

在不做任何设置的情况下,默认使用CPU进行推理。在设置为GPU推理时,如果电脑没有搜索到CUDA环境,则会自动转换成CPU进行推理。3.3 多输出模型推理

当模型有多个输出时,使用forward的重载方法,返回Mat类型的数组:

// 模型多输出std::vector preds;net.forward(preds);cv::Mat pred1 = preds[0];cv::Mat pred2 = preds[1];
4. ONNXRuntime部署GoogLeNet4.1 推理过程及代码实现

代码:

#include #include #include #include #include #include using namespace std;using namespace cv;using namespace Ort;// C++表示字符串的方式:char*、string、wchar_t*、wstring、字符串数组const wchar_t* onnxPath = L"E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx";std::string imagePath = "E:/inference-master/images/catdog";std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";// 标签名称列表(类名)std::vector classNameList;// 标签名,可以从文件读取int batchSize = 1;Ort::Env env{ nullptr };Ort::SessionOptions* sessionOptions;Ort::Session* session;size_t inputCount;size_t outputCount;std::vector inputNames;std::vector outputNames;std::vector inputShape;std::vector outputShape;// 对数组元素求softmaxstd::vector softmax(std::vector input){float total = 0;for (auto x : input)total += exp(x);std::vector result;for (auto x : input)result.push_back(exp(x) / total);return result;}int softmax(const cv::Mat& src, cv::Mat& dst){float max = 0.0;float sum = 0.0;max = *max_element(src.begin(), src.end());cv::exp((src - max), dst);sum = cv::sum(dst)[0];dst /= sum;return 0;}// 前(预)处理(通道变换、标准化等)void PreProcess(cv::Mat srcImage, cv::Mat& dstImage){// 通道变换,BGR->RGBcvtColor(srcImage, dstImage, cv::COLOR_BGR2RGB);resize(dstImage, dstImage, Size(224, 224));// 图像归一化dstImage.convertTo(dstImage, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);subtract(dstImage, mean, dstImage);divide(dstImage, std, dstImage);}// 模型初始化int ModelInit(const wchar_t* onnxPath, bool useCuda, int deviceId){// 读取标签名称std::ifstream fin(classNamesPath.c_str());std::string strLine;classNameList.clear();while (getline(fin, strLine))classNameList.push_back(strLine);fin.close();// 环境设置,控制台输出设置env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "GoogLeNet");sessionOptions = new Ort::SessionOptions();// 设置线程数sessionOptions->SetIntraOpNumThreads(16);// 优化等级:启用所有可能的优化sessionOptions->SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);if (useCuda) {// 开启CUDA加速,需要cuda_provider_factory.h头文件OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId);}// 创建sessionsession = new Ort::Session(env, onnxPath, *sessionOptions);// 获取输入输出数量inputCount = session->GetInputCount();outputCount = session->GetOutputCount();std::cout << "Number of inputs = " << inputCount << std::endl;std::cout << "Number of outputs = " << outputCount << std::endl;// 获取输入输出名称Ort::AllocatorWithDefaultOptions allocator;const char* inputName = session->GetInputName(0, allocator);const char* outputName = session->GetOutputName(0, allocator);inputNames = { inputName };outputNames = { outputName };std::cout << "Name of inputs = " << inputName << std::endl;std::cout << "Name of outputs = " << outputName << std::endl;// 获取输入输出维度信息,返回类型std::vectorinputShape = session->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();outputShape = session->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();std::cout << "Shape of inputs = " << "(" << inputShape[0] << "," << inputShape[1] << "," << inputShape[2] << "," << inputShape[3] << ")" << std::endl;std::cout << "Shape of outputs = " << "(" << outputShape[0] << "," << outputShape[1] << ")" << std::endl;return 0;}// 单图推理void ModelInference(cv::Mat srcImage, std::string& className, float& confidence){auto start = chrono::high_resolution_clock::now();// 输入图像预处理cv::Mat image;//PreProcess(srcImage, image);  // 这里使用调用函数的方式,处理时间莫名变长很多,很奇怪// 通道变换,BGR->RGBcvtColor(srcImage, image, cv::COLOR_BGR2RGB);resize(image, image, Size(224, 224));// 图像归一化image.convertTo(image, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);subtract(image, mean, image);divide(image, std, image);cv::Mat blob = cv::dnn::blobFromImage(image);auto end1 = std::chrono::high_resolution_clock::now();auto ms1 = std::chrono::duration_cast(end1 - start);std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;// 创建输入tensorauto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);std::vector inputTensors;inputTensors.emplace_back(Ort::Value::CreateTensor(memoryInfo,blob.ptr(), blob.total(), inputShape.data(), inputShape.size()));// 推理auto outputTensors = session->Run(Ort::RunOptions{ nullptr },inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount);auto end2 = std::chrono::high_resolution_clock::now();auto ms2 = std::chrono::duration_cast(end2 - end1);std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;// 获取输出float* preds = outputTensors[0].GetTensorMutableData();// 也可以使用outputTensors.front();int64_t numClasses = outputShape[1];cv::Mat output = cv::Mat_(1, numClasses);for (int j = 0; j < numClasses; j++) {output.at(0, j) = preds[j];}Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(output, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;className = classNameList[1];confidence = probability;auto end3 = std::chrono::high_resolution_clock::now();auto ms3 = std::chrono::duration_cast(end3 - end2);std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;auto ms = chrono::duration_cast(end3 - start);std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;}// 单图推理void ModelInference_Batch(std::vector srcImages, std::vector& classNames, std::vector& confidences){auto start = chrono::high_resolution_clock::now();// 输入图像预处理std::vector images;for (size_t i = 0; i < srcImages.size(); i++){cv::Mat image = srcImages[i].clone();// 通道变换,BGR->RGBcvtColor(image, image, cv::COLOR_BGR2RGB);resize(image, image, Size(224, 224));// 图像归一化image.convertTo(image, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);subtract(image, mean, image);divide(image, std, image);images.push_back(image);}// 图像转blob格式cv::Mat blob = cv::dnn::blobFromImages(images);auto end1 = std::chrono::high_resolution_clock::now();auto ms1 = std::chrono::duration_cast(end1 - start);std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;// 创建输入tensorstd::vector inputTensors;auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);inputTensors.emplace_back(Ort::Value::CreateTensor(memoryInfo,blob.ptr(), blob.total(), inputShape.data(), inputShape.size()));// 推理std::vector outputTensors = session->Run(Ort::RunOptions{ nullptr },inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount);auto end2 = std::chrono::high_resolution_clock::now();auto ms2 = std::chrono::duration_cast(end2 - end1)/100;std::cout << "inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;// 获取输出float* preds = outputTensors[0].GetTensorMutableData();// 也可以使用outputTensors.front();// cout << preds[0] << "," << preds[1] << "," << preds[1000] << "," << preds[1001] << endl;int batch = outputShape[0];int numClasses = outputShape[1];cv::Mat output(batch, numClasses, CV_32FC1, preds);int rows = output.size[0];// batchint cols = output.size[1];// 类别数(每一个类别的得分)for (int row = 0; row < rows; row++){cv::Mat scores(1, cols, CV_32FC1, output.ptr(row));softmax(scores, scores);// 结果归一化Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;classNames.push_back(classNameList[labelIndex]);confidences.push_back(probability);}auto end3 = std::chrono::high_resolution_clock::now();auto ms3 = std::chrono::duration_cast(end3 - end2);std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;auto ms = chrono::duration_cast(end3 - start);std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;}int main(int argc, char** argv){// 模型初始化ModelInit(onnxPath, true, 0);// 读取图像std::vector filenames;cv::glob(imagePath, filenames);// 单图推理测试for (int i = 0; i < filenames.size(); i++){// 每张图重复运行100次,计算平均时间auto start = chrono::high_resolution_clock::now();cv::Mat srcImage = imread(filenames[i]);std::string className;float confidence;for (int n = 0; n < 101; n++) {if (n == 1)start = chrono::high_resolution_clock::now();ModelInference(srcImage, className, confidence);}// 显示cv::putText(srcImage, className + ":" + std::to_string(confidence),cv::Point(10, 20), FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 0, 255), 1, 1);auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100;std::cout << "onnxruntime 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}// 批量推理测试std::vector srcImages;for (int i = 0; i < filenames.size(); i++){cv::Mat image = imread(filenames[i]);srcImages.push_back(image);if ((i + 1) % batchSize == 0 || i == filenames.size() - 1){// 重复100次,计算平均时间auto start = chrono::high_resolution_clock::now();for (int n = 0; n < 101; n++) {if (n == 1)start = chrono::high_resolution_clock::now();// 首次推理耗时很久std::vector classNames;std::vector confidences;ModelInference_Batch(srcImages, classNames, confidences);}srcImages.clear();auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100;std::cout << "onnxruntime batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}}return 0;}

注意:ORT支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件是不支持推理的。

4.2 选择CPU/GPU

使用GPU推理,只需要添加一行代码:

if (useCuda) {// 开启CUDA加速OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId);} 
4.3 多输入多输出模型推理

推理步骤和单图推理基本一致,需要在输入tensor中依次添加所有的输入。假设模型有两个输入和两个输出:

// 创建sessionsession2 = new Ort::Session(env1, onnxPath, sessionOptions1);// 获取模型输入输出信息inputCount2 = session2->GetInputCount();outputCount2 = session2->GetOutputCount();// 输入和输出各有两个Ort::AllocatorWithDefaultOptions allocator;const char* inputName1 = session2->GetInputName(0, allocator);const char* inputName2 = session2->GetInputName(1, allocator);const char* outputName1 = session2->GetOutputName(0, allocator);const char* outputName2 = session2->GetOutputName(1, allocator);intputNames2 = { inputName1, inputName2 };outputNames2 = { outputName1, outputName2 };// 获取输入输出维度信息,返回类型std::vectorinputShape2_1 = session2->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();inputShape2_2 = session2->GetInputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape();outputShape2_1 = session2->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();outputShape2_2 = session2->GetOutputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape();...// 创建输入tensorauto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);std::vector inputTensors;inputTensors.emplace_back(Ort::Value::CreateTensor(memoryInfo,blob1.ptr(), blob1.total(), inputShape2_1.data(), inputShape2_1.size()));inputTensors.emplace_back(Ort::Value::CreateTensor(memoryInfo,blob2.ptr(), blob2.total(), inputShape2_2.data(), inputShape2_2.size()));// 推理auto outputTensors = session2->Run(Ort::RunOptions{ nullptr },intputNames2.data(), inputTensors.data(), inputCount2, outputNames2.data(), outputCount2);// 获取输出float* preds1 = outputTensors[0].GetTensorMutableData();float* preds2 = outputTensors[1].GetTensorMutableData();
5. TensorRT部署GoogLeNet

TRT推理有两种常见的方式:

通过官方安装包里边的提供的trtexec.exe工具,从onnx文件转换得到trt文件,然后执行推理;由onnx文件转化得到engine文件,再执行推理。

两种方式原理一样,这里我们只介绍第二种方式。推理过程可分为两阶段:使用onnx构建推理engine和加载engine执行推理。

5.1 构建推理引擎(engine文件)

engine的构建是TensorRT推理至关重要的一步,它特定于所构建的确切GPU模型,不能跨平台或TensorRT版本移植。举个简单的例子,如果你在RTX3060上使用TensorRT 8.2.5构建了engine,那么推理部署也必须要在RTX3060上进行,且要具备TensorRT 8.2.5环境。engine构建的大致流程如下:

engine的构建有很多种方式,这里我们介绍常用的三种。我一般会选择直接在Python中构建,这样模型的训练、转onnx、转engine都在Python端完成,方便且省事。

方法一:在Python中构建

import osimport sysimport loggingimport argparseimport tensorrt as trtos.environ["CUDA_VISIBLE_DEVICES"] = "0"# 延迟加载模式,cuda11.7新功能,设置为LAZY有可能会极大的降低内存和显存的占用os.environ["CUDA_MODULE_LOADING"] = "LAZY"logging.basicConfig(level=logging.INFO)logging.getLogger("EngineBuilder").setLevel(logging.INFO)log = logging.getLogger("EngineBuilder")class EngineBuilder:    """    Parses an ONNX graph and builds a TensorRT engine from it.    """    def __init__(self, batch_size=1, verbose=False, workspace=8):        """        :param verbose: If enabled, a higher verbosity level will be set on the TensorRT logger.        :param workspace: Max memory workspace to allow, in Gb.        """        # 1. 构建builder        self.trt_logger = trt.Logger(trt.Logger.INFO)        if verbose:            self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE        trt.init_libnvinfer_plugins(self.trt_logger, namespace="")        self.builder = trt.Builder(self.trt_logger)        self.config = self.builder.create_builder_config()  # 构造builder.config        self.config.max_workspace_size = workspace * (2 ** 30)  # workspace分配        self.batch_size = batch_size        self.network = None        self.parser = None    def create_network(self, onnx_path):        """        Parse the ONNX graph and create the corresponding TensorRT network definition.        :param onnx_path: The path to the ONNX graph to load.        """        network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))        self.network = self.builder.create_network(network_flags)        self.parser = trt.OnnxParser(self.network, self.trt_logger)        onnx_path = os.path.realpath(onnx_path)        with open(onnx_path, "rb") as f:            if not self.parser.parse(f.read()):                log.error("Failed to load ONNX file: {}".format(onnx_path))                for error in range(self.parser.num_errors):                    log.error(self.parser.get_error(error))                sys.exit(1)        # 获取网络输入输出        inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]        outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)]        log.info("Network Description")        for input in inputs:            self.batch_size = input.shape[0]            log.info("Input "{}" with shape {} and dtype {}".format(input.name, input.shape, input.dtype))        for output in outputs:            log.info("Output "{}" with shape {} and dtype {}".format(output.name, output.shape, output.dtype))        assert self.batch_size > 0        self.builder.max_batch_size = self.batch_size    def create_engine(self, engine_path, precision):        """        Build the TensorRT engine and serialize it to disk.        :param engine_path: The path where to serialize the engine to.        :param precision: The datatype to use for the engine, either "fp32", "fp16" or "int8".        """        engine_path = os.path.realpath(engine_path)        engine_dir = os.path.dirname(engine_path)        os.makedirs(engine_dir, exist_ok=True)        log.info("Building {} Engine in {}".format(precision, engine_path))        inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]        if precision == "fp16":            if not self.builder.platform_has_fast_fp16:                log.warning("FP16 is not supported natively on this platform/device")            else:                self.config.set_flag(trt.BuilderFlag.FP16)        with self.builder.build_engine(self.network, self.config) as engine, open(engine_path, "wb") as f:            log.info("Serializing engine to file: {:}".format(engine_path))            f.write(engine.serialize())def main(args):    builder = EngineBuilder(args.batch_size, args.verbose, args.workspace)    builder.create_network(args.onnx)    builder.create_engine(args.engine, args.precision)if __name__ == "__main__":    parser = argparse.ArgumentParser()    parser.add_argument("-o", "--onnx", default=r"googlenet-pretrained_batch8.onnx", help="The input ONNX model file to load")    parser.add_argument("-e", "--engine", default=r"googlenet-pretrained_batch8_from_py_3080_FP16.engine", help="The output path for the TRT engine")    parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],                        help="The precision mode to build in, either "fp32", "fp16" or "int8", default: "fp16"")    parser.add_argument("-b", "--batch_size", default=8, type=int, help="batch number of input")    parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")    parser.add_argument("-w", "--workspace", default=8, type=int, help="The max memory workspace size to allow in Gb, "                                                                       "default: 8")    args = parser.parse_args()    main(args)

生成fp16模型:参数precision设置为fp16即可。int8模型生成过程比较复杂,且对模型精度影响较大,用的不多,这里暂不介绍。

parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],                        help="The precision mode to build in, either "fp32", "fp16" or "int8", default: "fp16"")

方法二:在C++中构建

#include "NvInfer.h"#include "NvOnnxParser.h"#include "cuda_runtime_api.h"#include "logging.h"#include #include #include #include #include #include using namespace nvinfer1;using namespace nvonnxparser;using namespace std;using namespace cv;std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx";std::string enginePath = "E:/inference-master/models/engine/googlenet-pretrained_batch_from_cpp.engine";  // 通过C++构建static const int INPUT_H = 224;static const int INPUT_W = 224;static const int OUTPUT_SIZE = 1000;static const int BATCH_SIZE = 25;const char* INPUT_BLOB_NAME = "input";const char* OUTPUT_BLOB_NAME = "output";static Logger gLogger;// onnx转enginevoid onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) {    // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类    nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);    const auto explicitBatch = 1U << static_cast(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);    // 创建网络定义    nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);    // 创建onnx解析器来填充网络    nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger);    // 读取onnx模型文件    parser->parseFromFile(onnx_file_path.c_str(), 2);    for (int i = 0; i < parser->getNbErrors(); ++i) {        std::cout << "load error: " << parser->getError(i)->desc() << std::endl;    }    printf("tensorRT load mask onnx model successfully!!!...\n");    // 创建生成器配置对象    nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();       builder->setMaxBatchSize(BATCH_SIZE);           // 设置最大batch     config->setMaxWorkspaceSize(16 * (1 << 20));    // 设置最大工作空间大小    // 设置模型输出精度,0代表FP32,1代表FP16    if (type == 1) {        config->setFlag(nvinfer1::BuilderFlag::kFP16);    }    // 创建推理引擎    nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);    // 将推理引擎保存到本地    std::cout << "try to save engine file now~~~" << std::endl;    std::ofstream file_ptr(engine_file_path, std::ios::binary);    if (!file_ptr) {        std::cerr << "could not open plan output file" << std::endl;        return;    }    // 将模型转化为文件流数据    nvinfer1::IHostMemory* model_stream = engine->serialize();    // 将文件保存到本地    file_ptr.write(reinterpret_cast(model_stream->data()), model_stream->size());    // 销毁创建的对象    model_stream->destroy();    engine->destroy();    network->destroy();    parser->destroy();    std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl;}int main(int argc, char** argv){    // onnx转engine    onnx_to_engine(onnxPath, enginePath, 0);        return 0;} 

方法三:使用官方安装包bin目录下的trtexec.exe工具构建

trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224

fp16模型:在后边加--fp16即可

trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224 --fp16 
5.2 读取engine文件并部署模型

推理代码:

#include "NvInfer.h"#include "NvOnnxParser.h"#include "cuda_runtime_api.h"#include "logging.h"#include #include #include #include #include #include "cuda.h"#include "assert.h"#include "iostream"using namespace nvinfer1;using namespace nvonnxparser;using namespace std;using namespace cv;#define CHECK(status) \    do\    {\        auto ret = (status);\        if (ret != 0)\        {\            std::cerr << "Cuda failure: " << ret << std::endl;\            abort();\        }\    } while (0)std::string enginePath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1_from_py_3080_FP32.engine";std::string imagePath = "E:/inference-master/images/catdog";std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";// 标签名称列表(类名)std::vector classNameList;// 标签名列表static const int INPUT_H = 224;static const int INPUT_W = 224;static const int CHANNEL = 3;static const int OUTPUT_SIZE = 1000;static const int BATCH_SIZE = 1;const char* INPUT_BLOB_NAME = "input";const char* OUTPUT_BLOB_NAME = "output";static Logger gLogger;IRuntime* runtime;ICudaEngine* engine;IExecutionContext* context;void* gpu_buffers[2];cudaStream_t stream;const int inputIndex = 0;const int outputIndex = 1;// 提前申请内存,可节省推理时间static float mydata[BATCH_SIZE * CHANNEL * INPUT_H * INPUT_W];static float prob[BATCH_SIZE * OUTPUT_SIZE];// 逐行求softmaxint softmax(const cv::Mat & src, cv::Mat & dst){    float max = 0.0;    float sum = 0.0;    cv::Mat tmpdst = cv::Mat::zeros(src.size(), src.type());    std::vector srcRows;    // 逐行求softmax    for (size_t i = 0; i < src.rows; i++)    {        cv::Mat tmpRow;        cv::Mat dataRow = src.row(i).clone();        max = *std::max_element(dataRow.begin(), dataRow.end());        cv::exp((dataRow - max), tmpRow);        sum = cv::sum(tmpRow)[0];        tmpRow /= sum;        srcRows.push_back(tmpRow);        cv::vconcat(srcRows, tmpdst);    }    dst = tmpdst.clone();    return 0;}// onnx转enginevoid onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) {    // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类    nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger);    const auto explicitBatch = 1U << static_cast(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);    // 创建网络定义    nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch);    // 创建onnx解析器来填充网络    nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger);    // 读取onnx模型文件    parser->parseFromFile(onnx_file_path.c_str(), 2);    for (int i = 0; i < parser->getNbErrors(); ++i) {        std::cout << "load error: " << parser->getError(i)->desc() << std::endl;    }    printf("tensorRT load mask onnx model successfully!!!...\n");    // 创建生成器配置对象    nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();       builder->setMaxBatchSize(BATCH_SIZE);           // 设置最大batch     config->setMaxWorkspaceSize(16 * (1 << 20));    // 设置最大工作空间大小    // 设置模型输出精度    if (type == 1) {        config->setFlag(nvinfer1::BuilderFlag::kFP16);    }    if (type == 2) {        config->setFlag(nvinfer1::BuilderFlag::kINT8);    }    // 创建推理引擎    nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);    // 将推理引擎保存到本地    std::cout << "try to save engine file now~~~" << std::endl;    std::ofstream file_ptr(engine_file_path, std::ios::binary);    if (!file_ptr) {        std::cerr << "could not open plan output file" << std::endl;        return;    }    // 将模型转化为文件流数据    nvinfer1::IHostMemory* model_stream = engine->serialize();    // 将文件保存到本地    file_ptr.write(reinterpret_cast(model_stream->data()), model_stream->size());    // 销毁创建的对象    model_stream->destroy();    engine->destroy();    network->destroy();    parser->destroy();    std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl;}// 模型推理:包括创建GPU显存缓冲区、配置模型输入及模型推理void doInference(IExecutionContext& context, const void* input, float* output, int batchSize){    //auto start = chrono::high_resolution_clock::now();    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host    CHECK(cudaMemcpyAsync(gpu_buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));    // context.enqueue(batchSize, buffers, stream, nullptr);    context.enqueueV2(gpu_buffers, stream, nullptr);    //auto end1 = std::chrono::high_resolution_clock::now();    //auto ms1 = std::chrono::duration_cast(end1 - start);    //std::cout << "推理: " << (ms1 / 1000.0).count() << "ms" << std::endl;    CHECK(cudaMemcpyAsync(output, gpu_buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));    //size_t dest_pitch = 0;    //CHECK(cudaMemcpy2D(output, dest_pitch, buffers[outputIndex], batchSize * sizeof(float), batchSize, OUTPUT_SIZE, cudaMemcpyDeviceToHost));    cudaStreamSynchronize(stream);        //auto end2 = std::chrono::high_resolution_clock::now();    //auto ms2 = std::chrono::duration_cast(end2 - start)/100.0;    //std::cout << "cuda-host: " << (ms2 / 1000.0).count() << "ms" << std::endl;}// 结束推理,释放资源void GpuMemoryRelease(){    // Release stream and buffers    cudaStreamDestroy(stream);    CHECK(cudaFree(gpu_buffers[0]));    CHECK(cudaFree(gpu_buffers[1]));    // Destroy the engine    context->destroy();    engine->destroy();    runtime->destroy();}// GoogLeNet模型初始化void ModelInit(std::string enginePath, int deviceId){    // 设置GPU    cudaSetDevice(deviceId);    // 从本地读取engine模型文件    char* trtModelStream{ nullptr };    size_t size{ 0 };    std::ifstream file(enginePath, std::ios::binary);    if (file.good()) {        file.seekg(0, file.end);    // 将读指针从文件末尾开始移动0个字节        size = file.tellg();    // 返回读指针的位置,此时读指针的位置就是文件的字节数        file.seekg(0, file.beg);    // 将读指针从文件开头开始移动0个字节        trtModelStream = new char[size];        assert(trtModelStream);        file.read(trtModelStream, size);        file.close();    }    // 创建推理运行环境实例    runtime = createInferRuntime(gLogger);    assert(runtime != nullptr);    // 反序列化模型    engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);    assert(engine != nullptr);    // 创建推理上下文    context = engine->createExecutionContext();    assert(context != nullptr);    delete[] trtModelStream;    // Create stream    CHECK(cudaStreamCreate(&stream));    // Pointers to input and output device buffers to pass to engine.    // Engine requires exactly IEngine::getNbBindings() number of buffers.    assert(engine.getNbBindings() == 2);    // In order to bind the buffers, we need to know the names of the input and output tensors.    // Note that indices are guaranteed to be less than IEngine::getNbBindings()    const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);    const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);    // Create GPU buffers on device    CHECK(cudaMalloc(&gpu_buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float)));    CHECK(cudaMalloc(&gpu_buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float)));    // 读取标签名称    ifstream fin(classNamesPath.c_str());    string strLine;    classNameList.clear();    while (getline(fin, strLine))        classNameList.push_back(strLine);    fin.close();}// 单图推理bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence){    auto start = chrono::high_resolution_clock::now();    cv::Mat image = srcImage.clone();    // 预处理(尺寸变换、通道变换、归一化)    cv::cvtColor(image, image, cv::COLOR_BGR2RGB);    cv::resize(image, image, cv::Size(224, 224));    image.convertTo(image, CV_32FC3, 1.0 / 255.0);    cv::Scalar mean(0.485, 0.456, 0.406);    cv::Scalar std(0.229, 0.224, 0.225);    cv::subtract(image, mean, image);    cv::divide(image, std, image);    // cv::Mat blob = cv::dnn::blobFromImage(image);    // 下边代码比上边blobFromImages速度更快    for (int r = 0; r < INPUT_H; r++)    {        float* rowData = image.ptr(r);        for (int c = 0; c < INPUT_W; c++)        {            mydata[0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c];            mydata[1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1];            mydata[2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2];        }    }    // 模型推理    // doInference(*context, blob.data, prob, BATCH_SIZE);    doInference(*context, mydata, prob, BATCH_SIZE);    // 推理结果后处理    cv::Mat preds = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob);     softmax(preds, preds);    Point minLoc, maxLoc;    double minValue = 0, maxValue = 0;    cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc);    int labelIndex = maxLoc.x;    double probability = maxValue;    className = classNameList[labelIndex];    confidence = probability;    std::cout << "class:" << className << endl << "confidence:" << confidence << endl;    auto end = chrono::high_resolution_clock::now();    auto ms = chrono::duration_cast(end - start);    std::cout << "Inference time by TensorRT:" << (ms / 1000.0).count() << "ms" << std::endl;       return 0;}// GoogLeNet模型推理bool ModelInference_Batch(std::vector srcImages, std::vector& classNames, std::vector& confidences){    auto start = std::chrono::high_resolution_clock::now();    if (srcImages.size() != BATCH_SIZE) return false;    // 预处理(尺寸变换、通道变换、归一化)    std::vector images;    for (size_t i = 0; i < srcImages.size(); i++)    {        cv::Mat image = srcImages[i].clone();        cv::cvtColor(image, image, cv::COLOR_BGR2RGB);        cv::resize(image, image, cv::Size(224, 224));        image.convertTo(image, CV_32FC3, 1.0 / 255.0);        cv::Scalar mean(0.485, 0.456, 0.406);        cv::Scalar std(0.229, 0.224, 0.225);        cv::subtract(image, mean, image);        cv::divide(image, std, image);        images.push_back(image);    }    // 图像转blob格式    // cv::Mat blob = cv::dnn::blobFromImages(images);    // 下边代码比上边blobFromImages速度更快    for (int b = 0; b < BATCH_SIZE; b++)    {         cv::Mat image = images[b];        for (int r = 0; r < INPUT_H; r++)        {            float* rowData = image.ptr(r);            for (int c = 0; c < INPUT_W; c++)            {                mydata[b * CHANNEL * INPUT_H * INPUT_W + 0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c];                mydata[b * CHANNEL * INPUT_H * INPUT_W + 1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1];                mydata[b * CHANNEL * INPUT_H * INPUT_W + 2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2];            }           }    }         auto end1 = std::chrono::high_resolution_clock::now();    auto ms1 = std::chrono::duration_cast(end1 - start);    std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;    // 执行推理    doInference(*context, mydata, prob, BATCH_SIZE);    auto end2 = std::chrono::high_resolution_clock::now();    auto ms2 = std::chrono::duration_cast(end2 - end1);    std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;    // 推理结果后处理    cv::Mat result = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob);    softmax(result, result);    for (int r = 0; r < BATCH_SIZE; r++)    {        cv::Mat scores = result.row(r).clone();        cv::Point minLoc, maxLoc;        double minValue = 0, maxValue = 0;        cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);        int labelIndex = maxLoc.x;        double probability = maxValue;        classNames.push_back(classNameList[labelIndex]);        confidences.push_back(probability);    }    auto end3 = std::chrono::high_resolution_clock::now();    auto ms3 = std::chrono::duration_cast(end3 - end2);    std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;    auto ms = std::chrono::duration_cast(end3 - start);    std::cout << "TensorRT batch" << BATCH_SIZE << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl;    return true;}int main(int argc, char** argv){    // onnx转engine    // onnx_to_engine(onnxPath, enginePath, 0);    // 模型初始化    ModelInit(enginePath, 0);    // 读取图像    vector filenames;    cv::glob(imagePath, filenames);    // 单图推理测试    for (int n = 0; n < filenames.size(); n++)    {        // 重复100次,计算平均时间        auto start = chrono::high_resolution_clock::now();        cv::Mat src = imread(filenames[n]);        std::string className;        float confidence;        for (int i = 0; i < 101; i++) {            if (i == 1)                start = chrono::high_resolution_clock::now();            ModelInference(src, className, confidence);        }        auto end = chrono::high_resolution_clock::now();        auto ms = chrono::duration_cast(end - start) / 100;        std::cout << "TensorRT 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;    }    // 批量(动态batch)推理测试    std::vector srcImages;    int okNum = 0, ngNum = 0;    for (int n = 0; n < filenames.size(); n++)    {        cv::Mat image = imread(filenames[n]);        srcImages.push_back(image);        if ((n + 1) % BATCH_SIZE == 0 || n == filenames.size() - 1)        {            // 重复100次,计算平均时间            auto start = chrono::high_resolution_clock::now();            for (int i = 0; i < 101; i++) {                if (i == 1)                    start = chrono::high_resolution_clock::now();                std::vector classNames;                std::vector confidences;                ModelInference_Batch(srcImages, classNames, confidences);                for (int j = 0; j < classNames.size(); j++)                {                    if (classNames[j] == "0")                        okNum++;                    else                        ngNum++;                }            }            srcImages.clear();            auto end = chrono::high_resolution_clock::now();            auto ms = chrono::duration_cast(end - start) / 100;            std::cout << "TensorRT " << BATCH_SIZE << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;        }            }    GpuMemoryRelease();    std::cout << "all_num = " << filenames.size() << endl << "okNum = " << okNum << endl << "ngNum = " << ngNum << endl;    return 0;} 
5.3 fp32、fp16模型对比测试

fp16模型推理结果几乎和fp32一致,但是却较大的节约了显存和内存占用,同时推理速度也有明显的提升。

6. OpenVINO部署GoogLeNet6.1 推理过程及代码

代码:

/* 推理过程* 1. Create OpenVINO-Runtime Core* 2. Compile Model* 3. Create Inference Request* 4. Set Inputs* 5. Start Inference* 6. Process inference Results*/#include #include #include #include #include using namespace std;using namespace InferenceEngine;using namespace cv;std::string onnxPath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx";std::string imagePath = "E:/inference-master/images/catdog";std::string classNamesPath = "E:/inference-master/imagenet-classes.txt";// 标签名称列表(类名)ov::InferRequest inferRequest;std::vector classNameList;// 标签名,可以从文件读取int batchSize = 1;// softmax,输入输出为数组std::vector softmax(std::vector input){float total = 0;for (auto x : input)total += exp(x);std::vector result;for (auto x : input)result.push_back(exp(x) / total);return result;}// softmax,输入输出为Matint softmax(const cv::Mat& src, cv::Mat& dst){float max = 0.0;float sum = 0.0;max = *max_element(src.begin(), src.end());cv::exp((src - max), dst);sum = cv::sum(dst)[0];dst /= sum;return 0;}// 模型初始化void ModelInit(string onnxPath){// Step 1: 创建一个Core对象ov::Core core;// 打印当前设备std::vector availableDevices = core.get_available_devices();for (int i = 0; i < availableDevices.size(); i++)printf("supported device name: %s\n", availableDevices[i].c_str());// Step 2: 读取模型std::shared_ptr model = core.read_model(onnxPath);// Step 3: 加载模型到CPUov::CompiledModel compiled_model = core.compile_model(model, "CPU");// 设置推理实例并发数为5个//core.set_property("CPU", ov::streams::num(10));// 设置推理实例数为自动分配//core.set_property("CPU", ov::streams::num(ov::streams::AUTO));// 推理实例数按计算资源平均分配//core.set_property("CPU", ov::streams::num(ov::streams::NUMA));// 设置推理实例的线程并发数为10// core.set_property("CPU", ov::inference_num_threads(20));// Step 4: 创建推理请求inferRequest = compiled_model.create_infer_request();// 读取标签名称ifstream fin(classNamesPath.c_str());string strLine;classNameList.clear();while (getline(fin, strLine))classNameList.push_back(strLine);fin.close();}// 单图推理void ModelInference(cv::Mat srcImage, std::string& className, float& confidence ){auto start = chrono::high_resolution_clock::now();// Step 5: 将输入数据填充到输入tensor// 通过索引获取输入tensorov::Tensor input_tensor = inferRequest.get_input_tensor(0);// 通过名称获取输入tensor// ov::Tensor input_tensor = infer_request.get_tensor("input");// 预处理cv::Mat image = srcImage.clone();cv::cvtColor(image, image, cv::COLOR_BGR2RGB);resize(image, image, Size(224, 224));image.convertTo(image, CV_32FC3, 1.0 / 255.0);Scalar mean(0.485, 0.456, 0.406);Scalar std(0.229, 0.224, 0.225);subtract(image, mean, image);divide(image, std, image);// HWC -> NCHWov::Shape tensor_shape = input_tensor.get_shape();const size_t channels = tensor_shape[1];const size_t height = tensor_shape[2];const size_t width = tensor_shape[3];float* image_data = input_tensor.data();for (size_t r = 0; r < height; r++) {for (size_t c = 0; c < width * channels; c++) {int w = (r * width * channels + c) / channels;int mod = (r * width * channels + c) % channels;  // 0,1,2image_data[mod * width * height + w] = image.at(r, c);}}// --------------- Step 6: Start inference ---------------inferRequest.infer();// --------------- Step 7: Process the inference results ---------------// model has only one outputauto output_tensor = inferRequest.get_output_tensor();float* detection = (float*)output_tensor.data();ov::Shape out_shape = output_tensor.get_shape();int batch = output_tensor.get_shape()[0];int num_classes = output_tensor.get_shape()[1];cv::Mat result(batch, num_classes, CV_32F, detection);softmax(result, result);Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start);std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl;}// 多图并行推理(动态batch)void ModelInference_Batch(std::vector srcImages, std::vector& classNames, std::vector& confidences){auto start = chrono::high_resolution_clock::now();// Step 5: 将输入数据填充到输入tensor// 通过索引获取输入tensorov::Tensor input_tensor = inferRequest.get_input_tensor(0);// 通过名称获取输入tensor// ov::Tensor input_tensor = infer_request.get_tensor("input");// 预处理(尺寸变换、通道变换、归一化)std::vector images;for (size_t i = 0; i < srcImages.size(); i++){cv::Mat image = srcImages[i].clone();cv::cvtColor(image, image, cv::COLOR_BGR2RGB);cv::resize(image, image, cv::Size(224, 224));image.convertTo(image, CV_32FC3, 1.0 / 255.0);cv::Scalar mean(0.485, 0.456, 0.406);cv::Scalar std(0.229, 0.224, 0.225);cv::subtract(image, mean, image);cv::divide(image, std, image);images.push_back(image);}ov::Shape tensor_shape = input_tensor.get_shape();const size_t batch = tensor_shape[0];const size_t channels = tensor_shape[1];const size_t height = tensor_shape[2];const size_t width = tensor_shape[3];float* image_data = input_tensor.data();// 图像转blob格式(速度比下边像素操作方式更快)cv::Mat blob = cv::dnn::blobFromImages(images);memcpy(image_data, blob.data, batch * 3 * height * width * sizeof(float));// NHWC -> NCHW//for (size_t b = 0; b < batch; b++){//for (size_t r = 0; r < height; r++) {//for (size_t c = 0; c < width * channels; c++) {//int w = (r * width * channels + c) / channels;//int mod = (r * width * channels + c) % channels;  // 0,1,2//image_data[b * 3 * width * height + mod * width * height + w] = images[b].at(r, c);//}//}//}auto end1 = std::chrono::high_resolution_clock::now();auto ms1 = std::chrono::duration_cast(end1 - start);std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl;// --------------- Step 6: Start inference ---------------inferRequest.infer();auto end2 = std::chrono::high_resolution_clock::now();auto ms2 = std::chrono::duration_cast(end2 - end1)/100;std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl;// --------------- Step 7: Process the inference results ---------------// model has only one outputauto output_tensor = inferRequest.get_output_tensor();float* detection = (float*)output_tensor.data();ov::Shape out_shape = output_tensor.get_shape();int num_classes = output_tensor.get_shape()[1];cv::Mat output(batch, num_classes, CV_32F, detection);int rows = output.size[0];// batchint cols = output.size[1];// 类别数(每一个类别的得分)for (int row = 0; row < rows; row++){cv::Mat scores(1, cols, CV_32FC1, output.ptr(row));softmax(scores, scores);// 结果归一化Point minLoc, maxLoc;double minValue = 0, maxValue = 0;cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc);int labelIndex = maxLoc.x;double probability = maxValue;classNames.push_back(classNameList[labelIndex]);confidences.push_back(probability);}auto end3 = std::chrono::high_resolution_clock::now();auto ms3 = std::chrono::duration_cast(end3 - end2);std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl;auto ms = chrono::duration_cast(end3 - start);std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl;}int main(int argc, char** argv){// 模型初始化ModelInit(onnxPath);// 读取图像vector filenames;glob(imagePath, filenames);// 单图推理测试for (int n = 0; n < filenames.size(); n++){// 重复100次,计算平均时间auto start = chrono::high_resolution_clock::now();for (int i = 0; i < 101; i++) {if (i == 1)start = chrono::high_resolution_clock::now();cv::Mat src = imread(filenames[n]);std::string className;float confidence;ModelInference(src, className, confidence);}auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100.0;std::cout << "opencv_dnn 单图平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}std::vector srcImages;for (int i = 0; i < filenames.size(); i++){cv::Mat image = imread(filenames[i]);srcImages.push_back(image);if ((i + 1) % batchSize == 0 || i == filenames.size() - 1){// 重复100次,计算平均时间auto start = chrono::high_resolution_clock::now();for (int i = 0; i < 101; i++) {if (i == 1)start = chrono::high_resolution_clock::now();std::vector classNames;std::vector confidences;ModelInference_Batch(srcImages, classNames, confidences);}srcImages.clear();auto end = chrono::high_resolution_clock::now();auto ms = chrono::duration_cast(end - start) / 100;std::cout << "openvino batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl;}}return 0;}

注意:OV支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件会报错。

6.2 遇到的问题

理论:OpenVINO是基于CPU推理最佳的方式。

实测:在测试OpenVINO的过程中,我们发现OpenVINO推理对于CPU的利用率远没有OpenCV DNN和ONNXRuntime高,这也是随着batch数量增加,OV在CPU上的推理速度反而不如DNN和ORT的主要原因。尝试过网上的多种优化方式,比如设置线程数并发数等等,未取得任何改善。如下图,在OpenVINO推理过程中,始终只有一半的CPU处于活跃状态;而OnnxRuntime或者OpenCV DNN推理时,所有的CPU均处于活跃状态。

7. 四种推理方式对比测试

深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。

以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:

基于CPU推理:

基于GPU推理:

不论采用何种推理方式,同一网络的前处理和后处理过程基本都是一致的。所以,为了更直观的对比几种推理方式的速度,我们抛去前后处理,只统计图中实际推理部分,即3、4、5这三个过程的执行时间。

同样是GoogLeNet网络,步骤3-5的执行时间对比如下:

注:OpenVINO-CPU测试中始终只使用了一半数量的内核,各种优化设置都没有改善。

最终结论:

GPU加速首选TensorRT;CPU加速,单图推理首选OpenVINO,多图并行推理可选择ONNXRuntime;如果需要兼具CPU和GPU推理功能,可选择ONNXRuntime。参考资料

1. openvino2022版安装配置与C++SDK开发详解

2.https://github.com/NVIDIA/TensorRT

3.https://github.com/wang-xinyu/tensorrtx

4. 【TensorRT】TensorRT 部署Yolov5模型(C++)

标签:

广告

Copyright ?   2015-2022 海峡商场网版权所有  备案号:皖ICP备2022009963号-10   联系邮箱:396 029 142 @qq.com